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Introduction
I As an emerging mobility service, bike-sharing has become increasingly popular around the world. A critical

question in planning and designing bike-sharing services is to know how different land-use and built
environment factors affect bike-sharing demand.

I Most existing research investigated this problem from a holistic view by regression models, where the
regression coefficients are the same for all bicycle stations. However, a global regression model essen-
tially ignores the local spatial effects of different factors.

I In this paper, we develop a regression model with spatially varying coefficients to investigate how
land use attributes, social-demographic, and transportation infrastructure affect the bike-sharing demand
at different stations. The regression coefficients in the model are station-specific and regularized by
a graph structure that encourages nearby stations to have similar coefficients.

I We apply the model to the station-level bike-sharing demand data from the BIXI service in Montreal,
Canada. We find that the obtained regression coefficients demonstrate clear spatially-varying patterns.

Bike-sharing Demand and Influential Factors
Bike-sharing demand

I BIXI, the first large-scale bike-sharing system in
North America, is located in Montreal, Canada. In
2019, there are 615 stations and 5.6 million trip
records in the BIXI system.

I For most stations, bicycle demand peaks at two pe-
riods in a weekday—6:00-10:00 am and 3:00-7:00
pm. The spatial distributions of bicycle demand are
different in these two periods.

I Fig. 1 shows the average hourly departure de-
mand distributions for morning and afternoon peaks,
where each BIXI station is represented by a catch-
ment area with 250 meters radius, and Thiessen
polygon is used to determine the boundary be-
tween overlapping catchment areas Fig. 1 Average hourly departures for BIXI stations in Montreal (left: morning

peak, right: afternoon peak).

Influential factors

Regression with Graph regularization
Linear regression model
I For station i (i ∈ {1, ... , N}), yi denotes its bike-sharing demand, which is the dependent variable. Denote a

vector of independent variables by xi = [1, xi1, ... , xim]> for station i , where m is the number of factors. The
regression model with spatially varying coefficients for all stations is described as:

min
N∑

i=1

(
yi − x>

i βi
)2

. (1)

where βi = [βi0,βi1, ... ,βim]> is a coefficient vector for station i , εi is the error term.

I If coefficient vectors βi are the same for all stations, Eq. (1) is the least square problem. However, we
study the factors’ effect at a station-level and assume coefficient vectors are varying over stations. In this
situation, we can find many sets of βi that minimizes Eq. (1) (to zero), which is not our expected.

Linear regression with graph regularization
I A fundamental assumption in modeling the spatial effects is that nearby stations have similar coeffi-

cients. Following this assumption, we introduce a graph structure into the linear regression model.

I The linear regression model for each station with a graph regularization term, which penalizes the difference
between βi in adjacent nodes, is proposed in:

min
N∑

i=1

(
yi − x>

i βi
)2

+ λ
∑

(i ,j)∈E

wij ||βi − βj ||22, λ ≥ 0, (2)

where the parameter λ balances the regression error and the difference between coefficients in adjacent
nodes, wij is the weight of the edge (i , j), which is a decaying function of distance.

I Eq. (2) is a convex optimization problem and can be efficiently solved by the commonly-used optimization
software, such as CVXPY. For large-scale problems, the Alternating Direction Method of Multipliers (ADMM)
can be used to solve the problem in a distributed and scalable manner.

I Hyper-parameter tuning The regression with graph regularization model has three hyper-parameters, λ
determines the intensity of the graph regularization term, K is the number of neighbors of a node, and α
controls the weight decaying of edges. We use 10-fold cross-validation to search the optimal values of
hyper-parameters.

Applications
I Spatially varying coefficients The solution βi for each station i in Eq. (2) will be station-based parameters,

which describe the heterogeneous effects of influential factors on bike-sharing demand.

I Prediction new stations For a new station p (p /∈ {1, ... , N}) with unknown bike-sharing demand, we can
estimate its factor coefficients βp by interpolating the coefficients β? from known stations and then achieve
demand prediction of station p. Let Nei(p) denote the K nearest stations of station p, and we want to find a
βp that minimizes the difference between the coefficients of neighbors, leading to the following optimization:

min
∑

i∈Nei(p)

wpi ||βp − β?i ||22. (3)
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Fig. 2 The factor coefficients distribution of morning peak with optimal parameters λ = 2,α = 1 and K = 4.
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